

Overview of presentation

- 1. Focus of this talk is light duty electric passenger vehicles (the electric car)
- 2. Types of electric cars
 - Performance, price, and production status
- 3. EV batteries
 - Current and potential technologies

Electric vehicles types

Quadra-cycles or Neighbourhood electric vehicles

e.g. Reva, YDEA, Megacity,, Maya 300

Seating: 2, 2+1, 4

Range: 80-160km

Top speed: 60-90 km (often speed limited

to meet safety requirements),

Battery type: Lead Acid, Zebra sodium, Li-

ion - 10-20 kWh

Peak power: 10 – 15 kW

Price: \$20,000 - \$40,000

Kerb weight: 650-900 kg

Production status: in production, not

available in NZ.

YDEA

NICE Mega city

Electric vehicles types II

2. City EV (Highway capable)

e.g. Hyundai (GETZ) Blade Electron*, iMIEV, Smart EV*, Nissan NuVu, Th!NK City?

Seating: 2 to 4

Range: 120-160km

Top speed: 110 - 130km

Battery: Li-ion 12-30 kWh,

Peak power 40-80 kW

Price: \$50,000 +

Kerb weight: 900 - 1100 kg

Production status: Blade available in

NZ. Smart EV available in Europe. More

vehicles announced as concept

vehicles.

TH!NK City

Mitsubishi iMIEV

Electric vehicles types III

3. Plug-in hybrid electric vehicle (PHEV)

e.g. BYD F6DM*, Chevy Volt, Prius (conversions)*, Fisker Karma, Ford Escape (PHEV)*

Seating: 2 to 4

Electric only range: 20-100km

Top speed: 130+ km/hr

Battery: Li-ion 10- 20 kWh,

Peak power 100+ kW

Price: \$50,000(?) - \$150,000

(Karma)

Kerb weight: 1500+ kg

Production status: Prius conversion, Ford Escape available in U.S. BYD in

China. Can order the Karma.

BYD F6DM

Fisker karma

Electric vehicles types VI

4. General purpose EV

e.g. Tesla Model S, BYD 6e, Volvo C30 BEV, Nissan Leaf

Seating: four – seven (with luggage space)

Range: 150km - 350 km (mostly

the lower end)

Top speed: 130+ km/hr

Battery: Li-ion 60 – 100+ kWh

Peak power: 70 + kW

Price: \$80,000+ (?) (increasing cost

with range)

Kerb weight: 1500 -2,200 kg

Production status: None in

production (production status

2010+)

Nissan Leaf

Tesla Model S

EV Batteries

The main members of the Lithium-ion family

Table 1: Characteristics of lithium-ion batteries using various chemistries

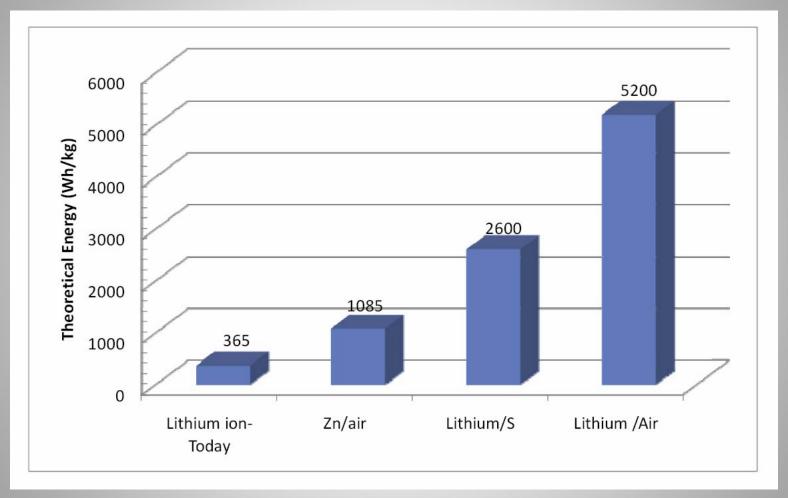
Chemistry	Cell voltage	Ah/gm	Energy density Cycle life		Thermal
Anode/cathode	Max/nom.	Anode/cathode	Wh/kg	(deep)	stability
Graphite/					fairly
NiCoMnO ₂	4.2/3.6	.36/.18	100-170	2000-3000	stable
Graphite/					fairly
Mn spinel	4.0/3.6	.36/.11	100-120	1000	stable
Graphite/					least
NiCoAlO ₂	4.2/3.6	.36/.18	100-150	2000-3000	stable
Graphite/					
iron phosphate	3.65/ 3.25	.36/.16	90-115	>3000	stable
Lithium titanate/					most
Mn spinel	2.8/2.4	.18/.11	60-75	>5000	stable

Source: Burke and Miller, 2009

EV Batteries

The Lithium-ion family cont:

Tah	Table 5: Illustrative "Snapshot" of Li-Ion PHEV Battery Chemistries												
Name	Description	Electrodes: Positive (Negative)	Companies	Automotive Status	Power	Energy	Safety	Life	Cost				
LCO	Lithium cobalt oxide	LiCoO ₂ (Graphite)	Various consumer applications (not automotive)	Limited auto applications (due to safety)	Good ⁴	Good ⁴	Low ^{2,4} , Mod. ³	Low ^{2,4}	Poor ^{2,3}				
NCA	Lithium nickel, cobalt and aluminum	Li(Ni _{0.85} Co _{0.1} Al _{0.05})O ₂ (Graphite)	JCI-Saft ³ GAIA ³ Matsuhita ³ Toyota ⁶	Pilot ¹	Good ^{1,3}	Good ^{1,3}	Mod. ¹	Good ¹	Mod. ^{1,3}				
LFP	Lithium iron phosphate	LiFePO ₄ (Graphite)	A123 ³ Valence ⁵ GAIA	Pilot ¹	Good ¹	Mod. ^{2,6}	Mod. 1,2,4	Good ^{1,4}	Mod. ¹ , Good ^{2,3}				
NCM	Lithium nickel, cobalt and manganese	Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ (Graphite)	Litcel (Mitsubishi) ³ Kokam ³ NEC Lamillion ³	Pilot ³	Mod. ³	Mod. ³ , Good ⁷	Mod. ³	Poor ³	Mod. ³				
LMS	Lithium manganese spinel	LiMnO ₂ or LiMn ₂ O ₄ (Li ₄ Ti ₅ O ₁₂)	GS Yuasa ³ Litcel (Mitsubishi) ³ NEC Lamillion ³ EnerDel	Devel. ¹	Mod. ²	Poor ^{1,2,3}	Excel. ¹ , Good ²	Excel. ¹ Mod. ⁶	Mod. ²				
LTO	Lithium titanium	LiMnO ₂ (LiTiO ₂)	Altairnano ³ EnerDel	Devel. ³	Poor ³ , Mod. ⁷	Poor ³	Good ³	Good ³	Poor ³				
MNS	Manganese titanium	LiMn _{1.5} Ni _{0.5} O ₄ (Li ₄ Ti ₅ O ₁₂)		Research ¹	Good ¹	Mod.1	Excel.1	Unkwn.	Mod.1				
MN	Manganese titanium	Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ (Graphite)		Research ¹	Excel.1	Excel.1	Excel.1	Unkwn.	Mod. ¹				


Source: Axsen, Burke, Kurani, 2008

EV Batteries

Some recent announcements:

- Panasonic are releasing high specific energy (cathode LiNiO₂)
 battery (est. 150+ Wh/kg)
- Research efforts to increase charging and discharging rates (power) (e.g. Byoungwoo Kang and Gerbrand Ceder (2009))
- Research efforts to increase battery energy storage focusing on using silicon rather than carbon for anode material (25% increase in specific energy) (e.g. Fuchsbichler B., Stangl C., Kren H., Sternad M., Hohl R., Koller S. (2009)
- Reducing costs currently cost about U.S. \$600/kWh (lower in China around \$3-500). The U.S. Govt goal is for U.S.200/kWh.
 Issue is mass production of EV batteries –
 - American Recovery and Reinvestment Act \$1.5 billion to US-based manufacturers to produce batteries and their components and to expand battery recycling capacity

Future EV Batteries

Source: Srinivasan, 2008

Concluding comments

- Price → Mass production → ↑ demand → ↓ Price
 Need a circuit breaker sustained high oil prices and/or green transport policy initiatives.
- Significant improvements in battery technology are likely over next 10-20 years – significantly improving vehicle performance.
- But these improvements will not address the fundamental problem of trying to sustain the current personal mobility paradigm in an increasingly resource constrained world.

Thank you

doug.clover@xtra.co.nz