

The car after the storm

 potential wind energy and electric vehicle synergies

SEF EV Seminar
Wellington
15 November 2007

Fraser Clark
Chief Executive
New Zealand Wind Energy Association

Energy Conversion Systems

'Back of an envelope' System Comparisons

	Electricity Generation	Transport
No. of units	60+	2,100,000
Average Unit Power	-	100 kW
Total System Power	9 GW	210 GW
	(5 GW peak demand)	
In use	54%	< 5%
Response time (off to full power)	Minutes to hours	Seconds
Capital cost	\$ thousands/kW	\$ hundreds/kW
Design lifetime	Approx. 100 – 200,000 hrs	Approx. 3,000 hr

The light vehicle fleet has a total power capacity about 20x that of the entire electricity generation system

Can these energy systems cross-over?

Driver wants sufficient energy available to make next journey

Typical use maybe 1 hr/day (i.e. <5%)

Energy stored for remainder of day

Variable output

Operates 95% of time (@ 40% capacity factor)

A high capacity energy storage system available 95% of the day

How do we accommodate peaks and troughs?

Vehicle to Grid (V2G)

From W. Kempton's presentation to UWIG, March '06

What sort of contribution could this make?

	10% of vehicles as electric
No. of units	210,000
Average Unit Power	15 kW
Total System Power	3.2 GW
In use	< 5%
Response time (off to full power)	milliseconds to seconds

Electricity
Peak Demand:
4.6 GW

Potential functions:

- System regulation (voltage and frequency)
- Instantaneous reserves
- Capacity firming
- Storage (e.g. increasing over-night demand)

Some investigation is underway overseas

Estimates made for the USA:

- 3.2% of vehicle fleet as battery with 50% availability could provide all 'regulation' requirements
- 38% of vehicles as battery, or 34% as PHEV with 50% availability could provide all fast reserve requirements

Utilities in the USA such as PG&E, AEP are actively investigating the concept

In Germany, turbine manufacturer Enercon is operating a battery-powered Audi A4.

Study underway in Sweden involving Volvo & Saab.

Some testing has already been undertaken

From W. Kempton's presentation to UWIG, March '06

See http://www.udel.edu/V2G/ for more info.

Thank you

www.windenergy.org.nz

